b ( L0 : A 20 N J
{'a'-_',:M Te-:x chap OF fM. ol AR PALT (==L Mcz{&i{,!.ﬂ ancl /&Iﬁ-lﬂ‘r,. ations

= et L

a4 '@.j M._ N‘S.S”_, w, aiup.\‘ (18 Hf.iu‘i‘.‘ff;ri
V)

Chiches ter England; €l Horweed, 199}
L e 4

CHAPTER 3

Building Mathematics Curricula with Applications and Modelling

Z Usiskin
University of Chicago, USA

SUMMARY

My perspective is that of a curriculum developer who has for some time
been trying to weave applications and modelling into the mathematics
curricula of average students. My remarks would be quite different if I
were organising courses wholly devoted to applications and modelling, as
many have done. I cannot separate applied mathematics from
mathematics itself, either in theory or in practice. To me they are both
part of the same magnificent edifice.

At international conferences, 1 am continually surprised by finding that
things 1 thought were the same everywhere are not, but more often
things I thought were different in other countries are nearly the same.
Still, my perspective was formed in the United States, and I apologise in
advance for any parochial views.

The subject of this paper is the building of mathematics curricula with
applications and modelling. My remarks and examples are based on my
experiences with students in the United States in Grades 7-12, that is,
of ages 12-18. For the most part, the students who have been the
targets of my work are sitting in classes which they either are required
to attend or feel compelled to take for college entrance or success.
Most of these students have not made any selection of particular fields
of study beyond the notion that they will or will not go to a college or
university after completing secondary school. Nearly two-thirds of those
who finish secondary school in the United States go to college, almost
half of the total age cohort.
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I probably do not need to remind you that, although almost all schools
in the United States teach nearly the same mathematics curriculum, there
is no national curriculum. Furthermore, starting in 9th grade, that is
with 14 year olds, the mathematics curriculum is very crowded; only
classes with the best students finish their textbooks. This makes change
particularly difficult to achieve in grades 9 through 12. Teachers must
not only be convinced of the importance of new content, but they have
to give up teaching old things in order to have time for the new.

Consequently, when 1 think of building curriculum in applications and
modelling, neither the students nor the teachers I am thinking of are
necessarily eager to work with applications and modelling. ‘

The word building has meanings both as a verb and as a noun, and I
wish to speak about both these aspects. As a noun, a building is a
structure or edifice. If we think of the magnificent edifice of
mathematics as a building, with the topics of mathematics being its
rooms, then the rooms are interconnected in many ways and this
building is very large, perhaps infinite in size. As educators, we have
the opportunity to select the doors to the rooms we want to open and
the floors of the building upon which we wish students to spend their
time. We may lecture on the most interesting features of this building
or we may allow students to explore on their own. Some of the rooms
of the great edifice of mathematics have doors and windows with wide
vistas to the real world; other rooms have small windows to the world
and perhaps only one door known to us.

The building of mathematics is very complex, and interrelated with other
buildings devoted to the social sciences, the physical sciences, philosophy,
business and commerce, and many other domains of human activity.
Perhaps a suitable metaphor for the relationships between these buildings
is the body. As Mandelbrot (1976) has pointed out, in our bodies there
are disjoint networks of arteries, of veins, and of nerves, yet every cell
is very close to all of these networks. Similarly, it seems that almost
every room of mathematics is close to many many other rooms.

1. THE AIMS OF MODELLING

As a verb, building means constructing.  Curriculum theorists generally
feel that one should begin the building of a curriculum by agreeing on
the aims, goals or objectives of that curriculum. In a plenary session at
ICTMA-3, Niss (1989) gave five aims of teaching applications and

modelling. Here they are, in a slightly briefer form that he gave
them:

(1) to foster creative and problem-solving attitudes, activities, and
competences;
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(2) to generate a critical potential towards the use and misuse of
mathematics in applied contexts:

(3) to provide the opportunity for students to practise applying
mathematics that they would need as individuals, citizens, or
professionals;

(4) to contribute to a balanced picture of mathematics;
(5) to assist in acquiring and understanding mathematical concepts.

His paper discusses these aims in some detail. 1 will assume a general
agreement with these goals, and will not discuss them further here.

After goals are established, one must decide how to reach them, that is,
what to teach, and what experiences to provide for students. Much of
the work in the past 20 years in applications and modelling has been
devoted to the first step in this process, the collection and exhibition of
examples. For instance, at ICME-4 in 1980 my colleague Max Bell was
asked to lecture on materials available worldwide for teaching applications
of mathematics, and many of the available materials were  simply
collections of applications (see Bell, 1983). More recently, the
proceedings of ICTMA-3 (Blum et al 1989) contain numerous articles
whose major goal is to point out some beautiful examples of
mathematical modelling and applications. The program for ICTMA-4 is
similar,

We are in a stage of phenomenal growth of applied mathematics due to
the very recent proliferation of personal computers which provide the
power to deal with huge amounts of data and heretofore unavailable
graphics capability. It is hard to realise that the first personal computers
appeared only 12 years ago, in 1977, and the first one—megabyte
personal computer is only six years old. Mathematics possesses an
accessibility to the general public as never before; that accessibility will
cause more and more applications to be found for mathematics. As with
pure mathematics, applied mathematics is certain to grow forever, New
areas of application are almost certain to be represented at ICTMA-n,
for all n.

However, even as this development is in its infancy, the utilisation of
applications and mathematical modelling is also beginning its maturity,
and as part of that maturation we gain new responsibility. We can no
longer be content with the mere display of beautiful applications or of
nice examples of modelling. We must organise and sequence the
applications so that students gain the general ideas and the power they
need to reach the goals summarised by Mogens Niss. If we expect ideas
to build in the minds of our students, we must build curricula to match.
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Put another way, 1 believe the time has come for us to consider a
longer time frame than just a set of examples or problems, or a single
course. If applications and modelling are as important as most of us
think they are, then the experiences with these ideas must begin early in
a child's education and continue throughout. The questions of selecting,
sequencing, and timing these experiences is what 1 mean by building a
curriculum,

2. THE NEED FOR STRUCTURE IN BUILDING A CURRICULUM

I am speaking to the flock, the converted. Not everyone agrees that
applications and modelling are so important. These are obstacles to ‘the
implementation of applications and wmodelling. In many countries,
including my own, applications of mathematics beyond arithmetic are not
part of the standard curriculum.  Algebra, geometry, and analysis are
taught with few applications.  Statistics does not appear. 'Modelling'
does not appear even in the index of the books.

There are teachers who think applications are too hard for most
students, and so they will teach them only to their best students. And
there are teachers who think applications are not really good
mathematics, appropriate only for the poorer students as motivation,
because the poorer students can't learn good mathematics. The students
in the middle, the average students, the majority of students, get fewer
experiences with applications than the best or the worst.

I should say that it is from my perspective, perhaps from our
perspective, that these students encounter no applications. Many teachers
think they are teaching applications through problems like the following,
which itself is an example in a widely used 9th grade textbook in the
United States.

A clerk mistakenly reversed the two digits in the price of a marking
pen and overcharged the customer 27¢. If the sum of the digits
was 15, what was the correct price of the pen?

This problem has at least two characteristics which distinguish it from
applications. ~ The first is called reverse given—find (Thorndike, 1923).
How do you know the sum of the digits is 15 and how do you know
the customer was overcharged by 27¢ unless you knew the price in the
first place? Reverse given—find is characteristic of many of the word
problems which substitute for applications.

Examination of the solution to this problem gives the second

characteristic which distinguishes it from an application.  The solution
begins by letting t = the tens digits and u = the units digit of the sale
price. Then it translates the conditions into the equations

v
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10t + u — (10u+t) = 27 and t + u = 15. After some manoeuvering,
this system is solved to find t = 9 and u = 6. The solution is given in
detail — it takes almost a page of the book.

The book does not consider the possibility of using arithmetic.  Yet
arithmetic provides a more efficient solution. There are only 4 two—digit
numbers whose sum of digits is 15; they are 69, 78, 87 and 96. The
two of these whose difference is 27 is easy to spot, and so the original
price was 69¢ and the overcharge was 96¢. The example unnecessarily
restricts the allowable mathematics, just the opposite of what would
happen in an applied situation.

This problem appears in a 1981 textbook, and 1 first spoke about it in
1982. 1 was certain that the publisher would hear about my remarks.
You will be interested to know that the problem was changed for the
current edition (Dolciani et al, 1986).

A catalog clerk mistakenly reversed the two digits in the price of a
radio fuse and overcharged the customer 36¢. If the sum of the
digits was 14, what was the correct price?

It is no wonder that huge numbers of educated adults see no reason to
learn algebra, and that there exist newspaper cartoons, in which algebra
is portrayed as being only good for one's CV, in which word problems
are said to be good not even for the dead, and a famous one (among
mathematics aficionados in the United States) in which Hell's library
contains many books but all of the same type - story problems.

Most mathematics teachers worldwide received their education when
mathematics  departments did not have many courses in applied
mathematics.  Accordingly, to encourage the teaching of applications, it
is customary to attempt to acquaint these teachers with large numbers of
applications.  The result has been virtually imperceptible.  Why?  Why
does knowledge of good applications have so little effect on these
teachers? 1 believe it is because, at the beginning, when they know only
a few applications, they do not consider them important.  After they
learn about greater numbers of applications, there comes a time when
they realise that the total number of applications is huge, and that they
are relatively ignorant. This overwhelms the average teacher, and every
new application merely brings more frustration. The teacher gropes for
some way to make applications manageable.

Suppose that just the opposite situation from the present existed, that all
the mathematics taught was applied, and none of the abstract properties
of operations or of the real numbers were taught.  Suppose that we
were to desire that some of these properties be learned by students.
Suppose we saw some beautiful examples such as the following,.
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(a+b)(c+d) = ac + bd + ad + bec.
x? -1 is always divisible by x — 1.
1 + nx is a good approximation to (1+x)* if x is small.

Addition is commutative.

IT 0 <a<band 0 <c <d, theng>%
We would be overwhelmed. We need a structure into' which these

properties fit. (You may already be looking at the last of these and
wondering if it is true. You are probably putting it into the structure
you already have for these properties.) This is a point I wish to
emphasise: building curricula in applications and modelling requires
that we structure the subject.

3. ORGANISATIONAL STRUCTURES FOR APPLIED MATHEMATICS

We have structures for pure mathematics, structures we associate with
famous names: Euclid, Euler, Galois, Boole, and more recently
Bourbaki. The structures are logical ones, from postulates through
theorems using the vehicles of definitions and proofs. So, although there
is a multitude of properties of numbers and operations, people do not
feel overwhelmed. We attach new properties to the old structure.

In contract, applied mathematics is described by some speakers as almost
the opposite. We hear that applications have exactly what pure
mathematics does not have — applications are not well-defined, they are
messy, they have many answers, they involve estimation, and so on.
This characterisation does not hold universally. There are well-defined,
elegant applications with single exact answers. There is pure
mathematics that is messy, has many answers, involves approximation,
and so on. Emphasising the messiness of some applied mathematics does
not help sell this content to traditional teachers.

Teachers need a structure into which they can fit these applications, a
structure which is richer than "Here is an application of systems of
linear equations". There are many possible structures for applied
mathematics. I will describe a few that I have found useful.

Learning Hierarchies

When 1 first began my work with applications, 1 wrote a course in which
algebra was developed through applications (Usiskin, 1979). The biggest
obstacle for my students in learning the applications of algebra was that
they did not know the applications of arithmetic. For instance, when
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discussing population growth and pointing out that a 2% growth rate on
a population P yields a population 1.02P, I found that the students had
never been given the problem of finding the result of a 2% growth rate
on a population of 10,000 or any other size.

A learning hierarchy is a network formed in the following way. You
examine all the ideas found in an application in order to insure that
each component idea is discussed before it is put with the others in the
application.  For instance, suppose one wishes to consider the graphical
representation of velocity as rate of change of distance. You need to
know some things about velocity, about rate of change, about distance.
Surprisingly many students memorise formulas for the rate of change
without having any idea how they are related either to rates or to
changes. (In the US we call the rate of change by the word slope
which disguises the connections; the British term gradient is no better.)
Their later teachers wrongly assume that the students have learned ideas
in earlier courses, ideas which they have never studied. Here is a
possible learning hierarchy for this idea.

graphical representation
of velocity as rate
of change of distance

. A
velocity as a

rate of change
of distance

representation
of velocity

representation
of distance

Z AN v
rate of change velocity representation
(slope) of data point

/ \

l rate ] change |

[distance ]

This is a natural hierarchy, but what makes it difficult to implement is
that the components occur over many years of a student's schooling.
For instance, the idea of change could be taught with subtraction as
early as second grade. This may explain why such hierarchies are
ignored by teachers. They do not want to go back to first principles,
viewing that as a waste of time. Yet, when students cannot do an
application, it is often because there is something down the hierarchy
which they do not understand or which they have not been taught, and
for that student it is pointless to go on.
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Use Meanings

The bottom row of the hierarchy contains some ideas which are
intimately related to particular mathematical concepts. Rate, as in
kilometers per hour, or students per class, or population per square
kilometer, is a fundamental use of division. Change is an application of

subtraction. Distance can be considered as another application of
subtraction; at higher levels distance is an application of absolute value.
Data point is a fundamental use of ordered n-—tuples. One of the

foundations of a curriculum in applications and mathematical modelling
has to be the giving attention to the basic uses of the commonly taught
or most important mathematical concepts. Active attention to these uses
is in the curriculum being developed by the University of Chicago School
Mathematics Project (1989).

For example, the idea of point has at least five use meanings, four of
which are found in the UCSMP (1990) materials: dot, the meaning held
by children and used on computer and television screens; idealised
location, the usual meaning in geometry; ordered pair or triple or
n-tuple, the usual meaning in numerical applications and in algebra, and
the model for data point; node, the meaning found in networks and
graphs; and centre of gravity, the meaning needed for work with
physical forces. The mathematics of point is different in these various
guises, and too often one of these meanings so predominates that the
others are considered distasteful. For instance, students may be
instructed that dots are not mathematical points. However, for applied
mathematics, one must consider pixels as points. The student who thinks
points must be locations is thwarted in understanding n-space when
n > 3. Yet that is a natural occurrence with data points.

There are use meanings of more advanced concepts. Linear functions

seem to have two basic use meanings: linear combination and constant
increase/decrease. That is, they arise from those kinds of situations in
the real world. They also arise from the uses of lines as shortest

distances, as outlines or intersections of geometric figures, and as
approximations to curves. The trigonometric functions also have at least
three basic uses: one has to do with ratios of lengths in triangles; one
has to do with circular motion and periodicity; and one has to do with
acceleration and differential equations.

Processes also have wuse meanings. For instance, the process of
estimation is used for many reasons: clarity, for ease of understanding;
facility, for ease of use; consistency, to agree with other precisions;
economy, to save time; safety, as when we estimate the maximum

weight an airplane can hold; and finally the many situations in which
estimates are forced.
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Freudenthal (1983) has stressed the need for multiple characterisations of
mathematical concepts if one is to understand their relationships to the
real world. I agree completely. When Max Bell and I engaged in an
in—depth study of the uses of arithmetic (1983), we developed six
meanings for number; count, measure, location, ratio comparison, code,
or derived constant. The location category includes addresses, the
ordinals, temperatures, and any other numbers on scales. We found that
scales like those used for measuring earthquakes or star magnitudes
simply did not appear in the curriculum at any level, and when
temperature was taught, it was often treated as if it were a measure like
volume. We would see problems like the following in books: “If the
temperature is 2° and it triples, what will be the new temperature?"
Confusions in the use of mathematical objects cannot help if one wishes
students to learn applied mathematics.

It is obvious that learning hierarchies and use meanings are somewhat
related. The use meanings tell you what to put at the bottom of the
learning hierarchy for applications; they tell you what should come first
in the curriculum.

Analogies with Pure Mathematics

Building a curriculum in applied mathematics is somewhat of an unsolved
problem. Following the advice of George Polya, one way to tackle this
problem is to seek analogous problems which we have solved. This
suggests that one way to build a curriculum in applied mathematics is to
take advantage of its analogies with pure mathematics.

The wuse meanings discussed earlier are analogous to postulates or
definitions in a mathematical system. Combining rate and change to get
rate of change is akin in combining postulates and definitions to get a
theorem.

I consider the process of modelling as being quite analogous - at least in
a pedagogical sense - to proof. Each is at the highest realm of
activity. Each is at the highest level of cognitive activity. Do we want
students to learn proof, because that is what mathematicians do? If S0,
then we should want students to learn modelling, because that is what
applied mathematicians do. If we do not want students to learn proof,
then perhaps we should not want them to learn to model. My own
view is that we do want students to learn some aspects of both proof
and modelling, to have experiences with both.

We have been teaching (or trying to teach) students proof for quite a
bit longer than we have been teaching modelling. What can we learn
from that experience? Here are some thoughts.
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It is almost impossible to understand proofs with concepts just
introduced. For instance, the student who is just introduced to the
concept of group finds it very difficult to write proofs about groups
immediately. Similarly, modelling in contexts not understood by the
students is likely to be a waste of time.

The ability to do proofs in one domain does not necessarily extend
to the ability to do proofs in another domain. The same is true
for modelling. That suggests that students should learn a variety of
kinds of modelling,

Proof learning required the Ilanguage of if-then statements and
justifying conclusions.  Modelling requires the same logic - if this
model is assumed, then we can deduce ... Thus we should be able
to use proof to teach modelling and use modelling to teach proof.

Communication of proofs and modelling both require that students
write using both mathematical and non-mathematical terminology.
Independent of the mathematical concepts, the writing task itself
poses difficulties for many students.

Proof competence comes quite slowly. We should not expect
modelling competence to come any more quickly.

Some proofs, like the infinitude of primes or the irrationality of
/ 2, are classic. Similarly, some models should be treated with the
same reverence, and taught to all. One that would surely qualify is
Kepler's modelling of Tycho Brahe's data with ellipses. Another is
the simulation of coin-tossing.

Dimensions of Understanding

A fourth structure also relates applied mathematics to other mathematics,
through the following question. What is meant by understanding a
particular concept?

Consider the concept of joint variation, as in the formula z = kx2y. To
many people, you understand joint wvariation if you can calculate the
value of k given values of x, y, and z. Understanding is doing; it
involves skill and algorithm. A second sort of understanding consists of
the mathematical theory: why is z quadrupled when x is doubled and vy
is kept constant? Understanding is knowing why; it is the mathematical
underpinnings dimension. A representational sort of wunderstanding is
favored by many psychologists.
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To them, understanding is being able to present or to find metaphors.
Many in applied mathematics view a fourth type of understanding as the
final goal: Do you know when and how apply the idea? In the case
of z = kx2y, one would at least want to consider the formula V = zr2h
for the volume of a cylinder, and discuss all of the other aspects in
terms of their real world implications.

These four major dimensions of understanding each have simple aspects,
and each have more complicated aspects. The skill-algorithm dimension
ranges from memorised basic facts through the carrying out of procedures
to the invention of algorithms. The mathematical properties
underpinning dimension ranges from being able to name properties to
justifications with them and, at the highest level, the discovery of proofs.
The use-application dimension ranges from straightforward one-step uses
through the applications of mathematical principles to modelling. The
representation-metaphor dimension ranges from concrete materials to the
use of representations to the creation of new metaphors  or
representations.

One can view the new math as an attempt to assert the importance of
mathematical underpinnings. 'Back to basics' was an attempt to reassert
skill. The popularity of Piaget and concrete materials has been a
recognition of the importance of representations in understanding.  The
existence of the ICTMAs and moves towards applications and modelling
are the assertion of the importance of the use dimension.

I believe students are best served by the view that all these dimensions
contribute to the ‘'real' understanding of mathematical concepts.
Furthermore, viewing understanding as having many dimensions helps to
operationalise Niss's last two reasons for teaching applications and
modelling, namely it contributes to a balanced picture of mathematics
and assists the student in acquiring an understanding of mathematical
concepts.

Closeness of Fit of Models
The process of modelling can be described as an attempt to find
mathematical concepts which are isomorphic to situations in the real
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world. The utility of the model is a function of the degree of
isomorphism, the closeness of the fit of the model. My experience
suggests that one should first consider models which are isomorphic and
move gradually to those which are not. For instance, in considering
situations modelled by quadratic functions, one might move first from an
exact model, for example the number of games required for n teams to
play each other; to an almost—exact theory-based model, for example
the path of a thrown, kicked, or batted ball; to what could be called
an impressionistic model, for example the use of a parabola to model a
frequency distribution.

We do not seem to have a language to describe the closeness of fit.
We call all of them models, not distinguishing between economic models,
which are surely impressionistic given their standard of performance, and
the almost—exact models found in the mathematics of celestial navigation.
I hope someone can come up with better words than the ones 1 have
used (exact, almost exact theory based, impressionistic). It would help
the curriculum if we had a better language for describing the fit of
models. (I was told recently that the word phenomenological is often
used where I have used impressionistic.)

4. BUILDING WITH TECHNOLOGY

No one can consider building a curriculum without considering the role
of technology; technology has driven the revolution in applied
mathematics. The usual things to say in this regard are: the cost of
hardware continues to decrease, the software is getting better and better,
there is good stuff out there and bad stuff out there. You will see

some wonderful things demonstrated at this meeting. There - I've said
them.
I would like to discuss briefly some issues less often discussed:  the

conflict with traditional ways, logistics, and equity.

The Conflict with Traditional Ways

The conflict with tradition is epitomised in answers given to the following
question.  What should a student be able to do without the aid of
technology? It is a fundamental question, complicated because technology
has greatly expanded what students can do. The responses occasionally
defy common sense.

There are those who believe that students should be required to have
exactly the same paper and pencil arithmetic skills they needed some
time ago despite the existence of calculators.  There are those who
believe that students should still be expected to get integrals by hand
even if they have access to computer software which deals with symbols.
The justification is that real understanding does not occur without labour.
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Yet we know that many students have the skills without any of the other
kinds of understandings. One reason for imposing a structure on
understanding is to explain the incorrectness of the view that one type of
understanding is always necessary for another.

On the other hand, there are those who believe that technology will
allow paper—-and-pencil skills of students to be maintained even if less
time is spent on them. This runs contrary to my Own common Sense;
virtually all educational research supports strong effects for time—on—task.

A compromise position is to require students to do the pure problems by
hand but allow technology on the applied problems. This  too is
illogical. If the technology is there, why not use it all the time?

Curiously, the weaker technological tool — the simple calculator — is seen
as more threatening than the computer. But I believe it is because the
user—friendly symbol-pushing calculator is not yet here. Once skills from
algebra through differential equations become automatic, we will see
teachers banning their use. Many teachers are quite willing to have
others use technology but unwilling to allow their own students to use it.

Logistics

Logistics, by which I mean the scheduling of student and machine, may
contribute to the unwillingness of many teachers to utilise computer
technology. In most schools, it is impossible to have all students at
computers at all times. The computer technology facilities thus have to
be scheduled. Though it is more difficult to schedule sporadic use of a
computer than to schedule continual use, the scheduling of continual use
may not be warranted by the range of the mathematics content in the
course.

The logistics problem is particularly critical on timed examinations.
There is a natural tendency to give harder tasks to students when the
students have access to calculators or computers. Otherwise, why use
this equipment? However, working the technology takes time, and if the
technology does any of the work, it takes quite a bit of time for the
students to explain what was done. The management of evaluation with
technology is in its infancy.

The logistics problem also appears with out—of—class assignments. If a
student is living in a place with no access to computers, how can an
assignment be given that requires computers?

Equity

Pencils and paper are inexpensive; if a student does not have them,
they can usually be obtained. But a computer is much more expensive,
and a student in today's mathematical world who has a computer
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equipped with sophisticated software at home is at an enormous
advantage over one who doesn't. Thus the greater accessibility of
mathematics has brought with it the troubling thought that, until all in a
society have access to technology, the poor will be even more
disadvantaged.

Hardware

When both a calculator and computer can do a job, even though the
calculator does not do it as well, the wisdom is beginning to be amassed
to use the calculator. For instance, Bert Waits and Franklin Demana at
Ohio State University now encourage use of a calculator function grapher
rather than their own very fine computer function graphing software for
secondary school classes, because every student can take home a
calculator. This also serves to solve the equity issue.

Some lap-tops are not full personal computers, have limited memory,
and are meant to be used in connection with a larger computer. These
are the modern—day slates and may become the student calculator of the
future.

5. CLOSING REMARKS

I would like to put the computer revolution in perspective. It is truly a
revolution, unlike anything in mathematics since the development of the
written algorithms for arithmetic in the 15th century. At that time,
algorithms for addition and subtraction of whole numbers had been
known for some time, but algorithms for multiplication and division like
those we now teach in elementary school had just been invented.
Before this time, it is reported (Schwetz, 1987) that some arithmetic
students were required to learn the multiplication tables from 1 x 1 to
99 x 99 because they had no other option for quick multiplication.
Their only other option was to use lots of addition.

It was in Italy that they first taught these new algorithms for
multiplication and division, and they were taught to students of secondary
school and university age. This was the applied mathematics of the
time, driven by the needs of the merchants and traders of the Italian
city—states.

If these algorithms were the new mathematics, the new technology was
printing.  Before printing, universal literacy was non-existent. = There
weren't enough books to teach the masses how to read. Reading was
considered a difficult chore, capable of being mastered only by an
aristocracy or by the specially ordained. We all know that stories were
passed down orally from generation to generation. I've wondered why
they weren't written down - they seem to have been passed down even
in cultures that had some writing. I'm convinced that people felt that
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something would be lost in the writing — the meter, the pauses, the
music possibly. Those who could not read and write did not trust this
new technology of reading and writing.

But printing changed all that. Now everyone could have books, even in
their homes. And so the fear and mistrust of reading and writing
waned, and people could aim for full literacy.

I believe the same will happen for mathematics. Calculators already are
in almost every home in the industrialised countries, and computers in
increasing percentages of them. These are the 20th century equivalents
of books, and they are taking the fear out of numbers, out of graphs,
and out of symbolism. The public is slowly learning that mathematics is
simply a particular kind of language, the language of the logic and
structure of phenomena in the universe — and that when mathematics is
around, mathematics can be learned by all who learn to read as early as
they learn to read.

Thus we can expect greater and greater amounts of applied mathematics
to be a part of the experiences of all people whether or not they learn
it in school. ~We all want students to be able to recognise situations
that call for mathematical techniques, to encourage the wise use of the
mathematics, and to discourage improper use. The fundamental
principles must begin early, for a building is no stronger than its
foundation. 1 hope that my remarks have given a few ideas on how
that building might be arranged.
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